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The feasibility of measuring nonstationary heat fluxes with normal heat meters 
is analyzed. Calculation correlations are given for determining the variable 
flux from the measured drop in temperature through the thickness of the heat 
meter. 

Heat meters of the auxiliary wall type have become very popular for measuring station- 
ary heat fluxes [I]. The simplicity of flux determination and advances in sensor manufactur- 
ing techniques and measurement procedures in recent years have encouraged researchers to use 
this method to determine nonstationary fluxes [2]. There is, however, a considerable limita- 
tion on the widespread use of these heat meters -- a large error, especially in determinations 
of rapidly fluctuating fluxes [3]. This error is fundamental and is related to a shortage 
of information obtained experimentally. The physical properties of the device (heat-meter 
constant) and the drop in temperature through its thickness at various moments in time are 
usually known. 

This statement will be examined in more detail for two common heat-meter models -- a 
single plate and a system of bodies of type plate-~alf-space. 

Unbounded Plate Model (Fig. la) 

Let the surface x = 0 of an unbounded plate receive a heat flux q. Let us assume that 
the thermophysical properties of the heat meter and the conditions for heat exchange at the 
boundary are not dependent on temperature. In the case of q = const the temperature field 
of the plate is linear: 

l : C~x ~ C2. 

If the temperatures of the surfaces t(O) = t, and t(~) ~ t2 are known, then the relationship 
between the flux and the temperature drop At = t, -- t2 takes the form 

q : -- At. ( 1 )  

From this very simple example it is clear that, although we must know two temperatures in 
order to determine C~ and C2, subsequent transformations make it possible to convert to the 
difference At. This conversion is only possible due to the linear distribution of the tem- 
peratures, when the value of the flux is the same in any cross section of the plate. 

Let us solve this problem for a variable flux q(~). The temperature field of the plate 
is described by the equation 

a2t 1 Ot 
. . . .  , (2) 

Ox ~ a O~ 
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Fig. i. Heat-meter models: type i (a) and type 2 (b). 

with edge and initial conditions 

l (0, r) = tl (r), t (6, T) = t2 (~), ~ (x, 0) = t o. 

The s o l u t i o n  t o  p r o b l e m  (2)  i s  o b t a i n e d  by  a n a l o g y  w i t h  [ 7 ] :  

Zo | " . 7 exp [--p~, (Fo - -  Fo,)l d Fo.  + t, (Fo) t (;{-, Fo) .... 2 !" E [ / ~ ( F o , ) - - ( - - 1 )  l+(Fo,)llx, sintx. 
0 n ~  1 

Here 

- -  x [t., ( F o )  - -  t~ ( F o ) l  - -  2 ~ [l~ ( F o )  - -  ( - -  1) ~ t2 ( F o ) ]  - -  z_, 
s i n  la,~ x 

x x aT = - - ;  ia,~=nr~, n =  1, 2 . . . .  ; F o - -  
6 6 2 

The heat flux passing through the sensor is determined by Fourier's law 

Taking into account (3), we find 

q (Fo) -- 

q ( F o ) = - -  ~---+ �9 0 ~ t  I 
6 07 I~-=0 " 

6 )~ { 2 2  It1 (0) - ( - -  1)n c,.(0)] 

F o  

1 
= d F o  ( - -  1)~ d F o . ]  

• exp [--  p.~ (Fo - -  Fo.)] d Fo.  4- t2 (Fo) - -  tl (Fo)} . 

(3) 

(4) 

From (4) it follows that in the case of q = const a stationary state t1(Fo) ~ tl, t2(Fo) 
t= is established in the heat meter over a certain period of time and formula (4) is con- 

verted into (i). 

For q = var and under the condition that an adequate time has passed from the beginning 
of the experiment and that the rates dt~/dFo and dt2/dFo are low, the series and the integral 
on the right-hand side of (3) can be neglected and a relationship structurally similar to (i) 
can be used: 

q(Fo) )' [ tz(Fo)-- t~(Fo)l  ~- ~ M(Fo).  (5) 
6 
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The admissibility of using (4) to determine nonstationary fluxes is governed by the 
error involved in the transition from (3) to (4) and, in general, it must be investigated 
separately. 

Recommendations on using formulas analogous to (5) are encountered in previously pub- 
lished literature. For example, as shown in [2], calculations according to the formula 

q ( ' ~ ) = - -  &=o "~+  - - t l ,=8 " ~ - - ~  (6) 
�9 6a 

provide satisfactory results for the condition that t(0, T) and t(6, T) do not contain fre- 
quencies greater than 0.i a/8 2. Although these recommendations do indicate the area in 
which formulas of the same form as (5) can be used, nevertheless the dependences given are 
partial and in each case additional grounds must be found for the feasibility of using them. 

Thus, for determining nonstationary fluxes on the basis of the heat-meter model under 
examination there is, in general, inadequate information only on the conductivity and the 
drop in temperature through the thickness of the heat meter. 

Half-Space Plate Model (Fig. ib) 

A model of this type is examined in [i] for the case of q = const. We shall solve this 
problem for a variable heat flux. 

The temperature fields of the heat meter ti(x, T) and the base t2(x, T) are described 
by the equations 

at, ( ) i = l, 2. (7 )  
a---~ = a~ t. ax  ~ i '  

The x =-- 6 surface absorbs the heat flux 

q ('0 = - -  ~.~ at--! 
OX !x=--6 ' 

(8) 

the magnitude of which must be determined. The other boundary and initial conditions take 
the following form: 

a& I = 0  or td.<-.~ = const; (9) 
ax I.~:: 

Ot 1 = O& I , 11!~=o = &l,=o; td~=o = tc, i = 1, 2. ( i 0 )  
X1 OX x=O ~2 OX Jx=O 

It should be noted that when the problem is formulated the following assumptions are made: 
the thermophysical parameters are not dependent on temperature; an ideal thermal contact 
occurs between the bodies. 

The solution to the problem posed can be written in transforms as [I] 

aO (s) = Vq (s) Q (s), (11) 

, ;T ~ 1 / / ' T  ch I I / /  8 • sh - - ~ - -  1 
al  , (12) Yq(s)=  t'l " T  / s  ) 

hence, the transform of the flux being sought 

I 
Q (s) - hO (s). (13) 

Yq (s) 

In the region of the inverse transforms, expression (13) is matched by the convolution of 
functions which are, in turn, the inverse transforms of the expressions i/Yq(s) and Ae(s). 
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Analyzing (13), it is easy to show that i/Yq(s) has an order of magnitude v~s and thus addi- 
tional transforms of (13) are necessary. The next scheme for solving the problem uses [6] 
for first-order Volterra integral equations. 

We introduce the quantities 

k(~)=  i 
0 

q ('r) dx and q (~) _ dle (r) , (14)  
d~ 

which are equivalent. According to [5], the transform of the k(T) function is related to 
Q(s) by the relation Q(s) = K(s)s, which allows us to rewrite (13) in another form: 

1 K (s) - - -  A0 (s). 
sYq (s) 

E x p r e s s i o n  (15)  s a t i s f i e s  t h e  c o n d i t i o n  f o r  t h e  i n v e r s e  L a p l a c e  t r a n s f o r m :  

Ie (*) = i ~ (~-) At ( ~ - -  ~) d~. 
b 

The  f l u x  b e i n g  s o u g h t  q (T)  c a n  b e  o b t a i n e d  u s i n g  t h e  L e i b n i z  r u l e  [ 7 ] :  

(15) 

(16) 

q (T) ---- ; qD (~) d IM (ZdT-- ~)] d~ 
0 

(17) 

for At(0) = 0. Using the property of the convolution 

q(T)= ~ q)(x--f) dtd~ (~) dE,. 
0 

(18) 

and then, in order to complete the solution, we must find the form of the ~(~) function, which 
is the inverse transform of the expression 

F (s) = I = Z 1 sh A V T - ?  • ch A ~ , (19)  

srq(s) al V s ( •  AVs-kchAVs- -  I) 

6 ~,2 al  
A --  'V al ~.1 

It is not always possible to establish in a general case the exact values of the T(~) 
function. Here we shall give solutions for several special cases of practical interest. 

i. The body 2 on which the heat meter i is placed is a heat insulator (I~ >> 12, • § 
In this case, 

)~ sh A l # s  
F(s)= V~-~ " ] # s ( c h A l / s  - 1) ' (20)  

and  h a v i n g  u s e d  t h e  V a s h c h e n k o - - Z a k h a r c h e n k o  t h e o r e m  we o b t a i n  [7]  

q~(})-- ~ exp A2 ~ �9 (21)  
n~O \ 

Taking into account (21), the expression for the heat flux will take the form 

2A, t E ( 4y[2n2 ) 8~2~I~1 
q ( ' ~ ) =  ~ At(z) exp ~ 1: 68 

r,--0 
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"r ao ~l E [ 4~2n2 ( ~ - - ~ ) ] }  d ~ ' -  X [At (~) - -  At (x)] n 2 exp ~ 
0 n= 1 

(22) 

2. The body 2 is an ideal conductor (X, << %a, • § ~). Then by analogy with Para. i, 

k 1 [ 1 2 
q (T) = .1/_ ~ at (T) - ] -  + 

e~ 

,,=1 -~S ] 

6 a [At (~) - -  At (x)] ~ n  2exp A z ( r - - ~ )  d~. 
0 n = l  

(23)  

3. The thermophysical properties of the heat meter and the base coincide (~ = i): 

[ ( A2,,)i q (r) = )'1 At('t) 1 + ~ exp 

oc A2n2 ] 
0 n = l  

A2 [ 
n z 4 (r __ ~)~: exp 

:'n=l 
4 (~---'--- ~)J ] [At (~) - -  At (~)] d~. (24) 

Dependences (22)-(24) are not suitable for practical use, since in experiments discrete 
values are usually obtained for the measured quantities (At) and the form of the functional 
dependence At(z) must be known in order to use the formulas indicated. Calculation correla- 
tions can be obtained by replacing the integrals in (22)-(24) by sums. This does not present 
great difficulties and, for example, for the latter case the calculation formulas will take 
the form 

q (x) -- ;h At(T)[ ~ ( A Z n Z ) ] l - S  exp X~ ~'"l [ ]/-~T [(N_k+l)3/z-(N-k) 3i'~ 
l / r talr  ,,=~ -~r l/-zal .,.= 3 

{ ] X NAT--#At  N A r - -  (k - -1 )  A'c ~ % ' / [ ' A Z n Z  exp - -  4 (NAr- -kAr )  

- -  exp [ - -  
4 [NAT-- (k- -  1) hx] V At 

X e p 4(NAt--kAT) - -exp - -  , ~ = N A r .  4A~ (n - -  k ~- 1) 
, '7= l 

(25) 

Thus, the properties of the heat meter (~, l,, a,), the drop in temperature at various 
moments in time, and the thermophysical properties of the half-space • = (X2/X,)/(~I/~=) must 
be known in order to measure nonstationary fluxes using a heat mes fastened onto a semi- 
bounded body. As yet, however, this problem can he solved only for special cases ~ = 0, I, ~. 
It should be noted also that working formulas of the type in (25) for calculating a flux are 
so cumbersome that it is best to use a computer for practical applications. 

NOTATION 

q, heat flux density; T, time; t,, tl, temperatures of heat meter and base; At, tempera- 
ture drop through thickness of heat meter; Ii, la, al, a2, thermal conductlvities and thermal 
diffusivities of heat meter (i) and base (2), respectively; 6, thickness of heat meter; x, 
current coordinate; Q(s), AS(s), Laplace transform of heat flux q(T) and temperature drop 
At(T); s, Laplace transform parameter; Yq(s), transfer function from heat flux to temperature 
drop; N, number of sections into which time interval 0-- T is divided. 
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DETERMINING THERMAL RESISTANCE OF CONTACT BETWEEN 

FINISHED WAVY METALLIC SURFACES 

V. M. Popov UDC 536.21 

A design formula for determining the thermal resistance of a contact is obtained 
using functions describing the relief of real wavy surfaces. 

Previously completed comparative experimental investigations into the thermal contact 
resistance (TCR) of metallic contacts between flat-rough and wavy surfaces [I, 2] have estab- 
lished a significant increase in the TCR for the latter for virtually identical grades of 
surface finish, while an increase in the height of the waves in the surface causes a marked 
increase in the TCR. At the same time, the theoretical model given in [2, 3] for determining 
the thermal contact resistance of wavy surfaces is to a certain extent idealized, inasmuch 
as a homogeneous distribution of the waves by height relative to a standard plane is taken 
as one of the basic premises. An analysis of profilograph traces from finished metallic sur- 
faces shows that real surfaces represent in most cases a set of waves of a usually spherical 
or ellipsoidal form with a constant radius subject to a normal (Gaussian) law of distribution 
by height [4]. 

Let us examine a contact couple with a wavy surface [2]. In general, the thermal con- 
tact conditions presuppose a temperature drop common to all macrocontacts: 

2~vla 

Hence for all macrocontacts the following equality obtains: 

2L~ a r  c = Q 

According to the last equality, the total heat flow is divided as it passes through the 
individual macrocontacts, i.e., we have the following relation: 

q l  _ Q2 _ q . ,  

al/% a2/~2 am/~? m 

hence with an unvariable 
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